A great option for representing different stages of a process

Funnel charts are mostly used for representing a sequential process, allowing the viewers to compare and see how the numbers change through the stages.

In this article, we’ll explore how to build a funnel chart from scratch using Matplotlib, and then we’ll have a look at an easier implementation with Plotly.


There is no method for instantly creating funnel charts in Matplotlib, so let’s start with a simple horizontal bar chart and build from there.

import matplotlib.pyplot as plty = [5,4,3,2,1]
x = [80,73,58,42,23]
plt.barh(y, x)

Use this intuitive tool to simplify mapping

In this article, we’ll explore Kepler.gl, an open-source solution for geospatial data visualization and exploration. Kepler was developed by Uber to make it easier for users of all levels to design meaningful maps that also look good. The tool can handle large amounts of data and has a friendly, intuitive interface that allows users to build effective maps in an instant.

Available for all to use since 2018, it’s about time we get a closer look at how the tool fits into the data visualization landscape. …

A quick guide on plotting and customizing calendar heatmaps with Python

Few visualizations are so intuitive and insightful as calendar heatmaps are at presenting time series data. It could be because they combine two very familiar visualizations, color coding and calendars.

You probably know someone who has a planner or a calendar full of notes; some may use brighter colors to mark tasks requiring more attention, or maybe they color-code everything by category.

The concept of calendar heatmaps is very similar. We encode a variable with color and plot them in a calendar format to understand its relationship with time.

This tutorial will explore a convenient package called Calplot to draw…

The basics to get you started with the fastest way of turning your scripts into apps

Streamlit is an easy-to-use framework, perfect for building web apps without struggling with layout, event handlers, or document trees.

Its friendly methods make it a great tool to explore datasets, demonstrate machine learning models, computer vision, natural language processing, data visualizations, and many other data-centric projects.

In this article, we’ll build a simple app to explore and transform datasets with Streamlit.

Getting Started

After installing it, we’ll create a file named app.py and start with something simple.

import streamlit as st #pip install streamlit
st.title('Explore a dataset')

In our environment terminal, we can go to the directory we saved our script…

A great way to visualize grouped and segmented proportions

Commonly referred to as a Mosaic plot, Spine plot, or just Mekko. This chart is often used, among other applications, as market maps to visualize industries segmented by types of customers, regions, and many other variables.

In essence, they are just a stacked bar chart where the bar widths are used to display another variable, usually the whole group’s proportion to the total.

How to draw this simple chart to display change and hierarchy

With a straightforward format that can effortlessly illustrate changes and rank variables, Slope charts are more than just an over-glorified line chart.

They have earned their place in data visualization and can be a great addition to your reports and dashboards.

In this article, we’ll explore how to plot them with Matplotlib, get a look at different ways of designing them and how they compare to other data visualizations.

A quick guide on how to draw these essential charts for stock analysis

With a history going back to the 18th century, Open-High-Low-Close (OHLC) charts are among the most popular financial analysis tools, typically used to illustrate stock prices over time.

In this article, we’ll see how to build an OHLC chart with Matplotlib from scratch, explore the advantages and limitations of this visualization, and get a look at a more straightforward approach with mplfinance.

How does an OHLC chart work?

The chart is composed of a series of vertical lines that pack four critical variables about the price; The minimum, maximum, initial, and ending values over time, commonly measured in hours, days, or weeks.

A guide to this elegant option for bar charts

Bars, lines, and some colors may be more than enough to visualize most data. But too many lines or bar charts always bothered me, they make my reports and dashboards feel redundant even if the information in those charts is unique.

Lollipop charts are a great variation of bar charts and represent our data just as effectively, with a pleasant design that can break the boringness of our reports.

This will be a short tutorial since you don’t need much to turn your bar chart into a lollipop chart.

I’ll be using historical data of avalanche fatalities in the US…

How to visualize real-time data with Python’s Matplotlib

Whether you’re working with a sensor, continually pulling data from an API, or have a file that’s often updated, you may want to analyze your data in real-time.

When and how to use texts in your data visualizations

Data visualization is all about reducing complexity; we use graphical representations to make difficult concepts and insights more comfortable to understand.

Titles, subtitles, notes, annotations, and labels serve an essential function in this process. They guide our audience through the story we’re trying to tell, much like a narrator.

In this article, we’ll explore the functions of titles, subtitles and labels, get a look at how to add annotations to our charts and check how to use custom fonts in Matplotlib.

Titles, Subtitles, Captions, and Labels

Let’s start with a simple line chart.

import matplotlib.pyplot as plt# data
spam = [263.12, 302.99, 291.23, 320.68, 312.17…

Thiago Carvalho

Data visualization enthusiast

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store